
A Fast Tree Algorithm for the Calculation of Electrical Field in 1.5D
Streamer Discharge Simulations

Chijie Zhuang1, Yong Zhang2, Xin Zhou1, and Rong Zeng1

1Department of Electrical Engineering, Tsinghua University, Beijing 100084, China.
2Courant Institute of Mathematical Sciences, New York University, New York, USA.

As the initial stage of various electrical discharges, the streamer discharge has drawn great attention. In the streamer discharge
simulation, the electric field computation takes more than 90% of the CPU time. In this paper, we propose a fast tree algorithm
which help reduce the computational complexity from O(N2) (typical for traditional direct method) to O(N logN). A rigorous
error estimation shows the relative error of the tree algorithm reduces exponentially fast with respect to the truncation term and
can be controlled adaptively. Numerical examples are presented to validate the accuracy and efficiency.

Index Terms—tree algorithm, electric field, disc model, streamer discharge.

I. INTRODUCTION

THE streamer is a type of electrical discharge emerging
when a strong electric field is applied to an air gap. The

streamer discharge has various applications, which makes its
simulation draw great attention.

The most time consuming part to simulate the streamer is
the calculation of the electric field, which may occupy about
90% CPU time. This paper focuses on the 1.5D model [1],
due to its great potential to simulate very long streamers.

For the 1.5-dimensional model, the Possion’s equation
is solved analytically using the so-called disc method [1].
Assume there is a disc with net charge density σ(x), radius
rd, thickness dy, the electric field it generates at point y
along the x-axis is:

dE(y) =

{ 1
2ε0

σ(x)(x−y√
(y−x)2+r2d

+ 1)dx, x− y < 0;

1
2ε0

σ(x)(x−y√
(y−x)2+r2d

− 1)dx, x− y ≥ 0.

(1)
To consider the influence of the electrodes to the electric

field, the image charges should be taken into account. We
consider the image charges whose distance to the electrodes
are less than L, where L is the length of the discharge gap.
Integrating over the whole domain, the solution of E is

E(y) =
1

2ε0

[∫ y

−L

σ(x)

(
x− y√

(x− y)2 + r2d
+ 1

)
dx

+

∫ L

y

σ(x)

(
x− y√

(x− y)2 + r2d
− 1

)
dx
]
. (2)

In this paper, we propose a tree algorithm to accelerate the
calculation of the electric field [2].

II. THE TREE ALGORITHM

If we write integral (2) using sufficient high order Gaussian
quadrature, and let qj :=

ωjσj

2ε0
where ωj is the Gaussian

quadrature weight, Eq. (2) reduces to

E(y) =
(m∑
j=0

qj −
n∑

j=m+1

qj
)
+

n∑
j=0

qj(xj − y)√
(xj − y)2 + r2d

. (3)

Below we will omit the term
∑m

j=0 qj−
∑n

j=m+1 qj for brevi-
ty, but the principle of the tree algorithm remains unchanged.

The fundamental idea of the tree algorithm is that to group
charges that lie close as one single source via multipole
expansions for the far-field interaction, while the near-field
interaction from the neighboring charges are evaluated directly.
Assume a cluster of charges {qj}nj=0 located at {xj}nj=0

are gathering around xc. To calculate the far-field E(y), i.e.
|y − xc| ≫ 0 and |y − rd| ≫ 0, a crude approximation is

E(y) =

n∑
j=0

qjΦ(xj , y) ≈
(n∑
j=0

qj
)
Φ(xc, y), (4)

with Φ(x, y) := x−y√
(x−y)2+r2d

. However, using Taylor expan-

sion, we have

Φ(x, y) =
∞∑
k=0

1

k!
Φ(k)(xc, y)(x− xc)

k (5)

=

p∑
k=0

1

k!
Φ(k)(xc, y)(x− xc)

k +Rp(x), (6)

where Φ(k) = ∂kPhi
∂xk ; p ∈ N; Rp is the residual and Rp =∑∞

k=p+1
1
k!Φ

(k)(xc, y)(x− xc)
k. Therefore, we have

E(y) =

n∑
j=0

qj

(∞∑
k=0

1

k!
Φ(k)(xc, y)(xj − xc)

k

)

≈
p∑

k=0

Φ(k)(xc, y)

 n∑
j=0

qj
(xj − xc)

k

k!

 . (7)

Let p = 0, Eq. (7) reduces to the crude approximation Eq. (4).
To calculate E(y), one only needs to calculate Φ(k)(xc, y).

We now derive a recurrence formula to calculate Φ(k)(x, y).
It is straightforward that

Φ(0)(x, y) =
x− y√

(x− y)2 + r2d
,Φ(1)(x, y) =

r2d(√
(x− y)2 + r2d

)3 ,
which implies

r2dΦ
(0)(x, y) = Φ(1)(x, y)

(
(x− y)3 + r2d(x− y)

)
. (8)

Differentiate Eq. (8) for k-1 times by the general Leibniz’s
rule, and do some algebraic simplifications,

(x− y)((x− y)2 + r2d)Φ
(k)(x, y) =(

r2d − (k − 1)(3(x− y)2 + r2d)
)
Φ(k−1)(x, y)

−3(k − 1)(k − 2)(x− y)Φ(k−2)(x, y)

−(k − 1)(k − 2)(k − 3)Φ(k−3)(x, y). (9)

Using Eq. (8) and (9), for a fixed y, we may then calculate
Φ(k)(xc, y) recursively , for k = 2, 3, ...p.

III. ERROR ESTIMATION

Now we give a rigorous error estimation for the evaluation
of electric field using Eq. (7). Without loss of generality, we
only consider the case xc = 0. Other cases reduce to xc = 0
case after a simple shift, i.e. x := x− xc.

Define a complex function f(z) := z−y√
(z−y)2+r2d

with

z ∈ C, which is an analytic function for |z| <
√
y2 + r2d.

By Cauchy’s integral formula, for any z satisfying |z| := r ≤
R := |y|,

f(z) =
1

2πi

∮
Γ

f(ξ)

ξ − z
dξ, f (k)(0) =

k!

2πi

∮
Γ

f(ξ)

ξk+1
dξ, (10)

where i =
√
−1, Γ := {w ∈ C||w| = R} is a contour

containing the point z. We have

f(z) =
1

2πi

∮
Γ

f(ξ)

ξ

1

1− z
ξ

dξ

=
1

2πi

∮
Γ

f(ξ)

ξ

(p∑
k=0

(
z

ξ
)k +

(zξ)
p+1

1− z
ξ

)
dξ

=
1

2πi

(p∑
k=0

zk
∮
Γ

f(ξ)

ξk+1
dξ +

∮
Γ

f(ξ)

ξ

(zξ)
p+1

1− z
ξ

dξ
)

=

p∑
k=0

f (k)(0)

k!
zk +

1

2πi

∮
Γ

f(ξ)

ξ

(zξ)
p+1

1− z
ξ

dξ (11)

:=

p∑
k=0

f (k)(0)

k!
zk +Rp. (12)

Using the fact |f(ξ)| is bounded for ξ ∈ Γ, i.e. |f(ξ)| ≤ M ,
we have

|Rp| =

∣∣∣∣∣ 1

2πi

∮
Γ

f(ξ)

ξ

(zξ)
p+1

1− z
ξ

dξ

∣∣∣∣∣
≤ 1

2π

∮
Γ

max
(∣∣∣∣∣ (

z
ξ)

p+1

1− z
ξ

∣∣∣∣∣
∣∣∣∣f(ξ)ξ

∣∣∣∣)dξ
≤ max

(∣∣∣∣∣ (
z
ξ)

p+1

1− z
ξ

∣∣∣∣∣)max |f(ξ)|

≤ M
R

R− r
(
r

R
)p+1. (13)

IV. VALIDATION AND EFFICIENCY

First we only calculate the far field to validate the Eq. (7).
We randomly generate 10000 charges in [−0.5, 0.5], which is
around x = 0, and set rd = 0.1, then calculate the electric field

at y = 1 (r/R = 0.5) using different numbers of truncation
terms, denoted by p. Results in Tab. I show the relative error
decays exponentially with respect to p. When p increases by
5, the error reduces about 50-100 times.

TABLE I
ACCURACY WITH DIFFERENT TRUNCATION TERMS p

p relative error
5 9.43e-5

10 1.17e-6
15 6.40e-8
20 6.48e-10

Then we evaluate both the near field and far field to test the
efficiency of the tree algorithm. Different amount of charge
sources, with random amount of charge, are randomly placed
in [0, 1], the evaluation locations are the same as the source
positions. The field generated by the nearing neighboring
charges are calculated directly and others are by Eq. (7). The
codes are implemented by C++. Results show that the CPU
time cost by the algorithm is roughly O(N logN), which is
much faster than the direct summation when N becomes large.

TABLE II
TIME COST COMPARISON WITH DIFFERENT N CHARGES AND TARGETS

N direct sum (s) tree code (s)
1e4 0.530 0.062
5e4 11.1 0.296
1e5 46.2 0.609
2e5 183.9 1.23

V. CONCLUSION

We present in this paper a fast tree algorithm to calculate
the electric field in 1.5D streamer discharge simulations. The
tree algorithm is based on the Taylor’s expansion and a
recurrence formula to calculate the expansion coefficients is
given following the general Leibniz’s rule, which makes the
coefficient computation in the algorithm very flexible. An error
estimation shows that error decays exponentially as the number
of truncation terms increases.

Examples are given to validate the error estimation and show
the time cost of the total algorithm is O(N logN) which may
reduce the computation time greatly.

ACKNOWLEDGEMENT

This work is supported by the National Natural Science
Foundation of China under grant 51577098 (Zhuang) and
grant 51325703 (Zeng), the Schrödinger Fellowship J3784-
N32 (Zhang). Prof. Jingfang Huang at University of North
Carolina, Chapel Hill, is greatly acknowledged for stimulating
discussion and continuous help.

REFERENCES

[1] Chijie Zhuang, Rong Zeng. A local discontinuous Galerkin method for
1.5-dimensional streamer discharge simulations. Applied Mathematics
and Computation. 2013, 219:9925-9934.

[2] Josh Barnes and Piet Huta. A hierarchical O(NlogN) force-calculation
algorithm. Nature. 1986, 324, 446-449.

